
ACS Review Spectroscopy

- 1. Which of the following has only a single peak in its proton NMR spectrum?
 - I. $(CH_3)_3CC1$ II. $(CH_3)_2C=C(CH_3)_2$ III. C=C H_3C CH_3
 - A. only I
 - B. only II
 - C. I and II
 - D. I, II, and III
- 2. A compound is either cyclononane or cyclodecane. Which of the following is the most useful technique in identifying the compound?
 - A. IR spectroscopy
 - B. mass spectrometry
 - C. proton NMR
 - D. C-13 NMR
- 3. Which of the following gives the furthest downfield shift from TMS in its proton NMR spectrum?
 - A. $(CH_3)_4C$
 - B. $(CH_3)_3N$
 - C. $(CH_3)_2O$
 - D. CH₃F
- 4. Which of the following gives the furthest downfield shift from TMS in its proton NMR spectrum?
 - A. CCl₄
 - B. CHCl₃
 - C. CH₂Cl₂
 - D. CH_3Cl
- 5. How many different sets of equivalent protons are there for *para*-xylene (1,4-dimethylbenzene)?
 - A. only 1
 - B. two
 - C. three
 - D. four
- 6. How many different sets of equivalent protons are there in the following compound?
 - C1 CH₃CCH₂C(CH₃)₃ CH₃
 - A. three
 - B. four
 - C. five
 - D. six
- 7. What is the multiplicity of the methylene hydrogens indicated in the proton NMR of the following compound?

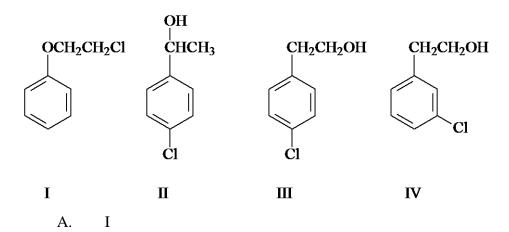
- A. doublet
- B. triplet
- C. quartet
- D. pentet
- 8. What is the multiplicity of the methylene hydrogens indicated in the proton NMR of the following compound?

CH₃CH₂OCH₂CH₂OCH₂CH₃

- A. singlet
- B. doublet
- C. triplet
- D. quartet
- 9. What are the approximate intensities of the four lines in the quartet from the proton NMR of diethyl ether, (CH₃CH₂)₂O? (Assume distortion of the quartet is minimal.)
 - A. 1:1:1:1
 - B. 1:2:2:1
 - C. 2:3:3:2
 - D. 1:4:4:1
- 10. Which compound below fits the following proton NMR data?

triplet δ 1.22 (3H)

singlet δ 1.98 (3H)

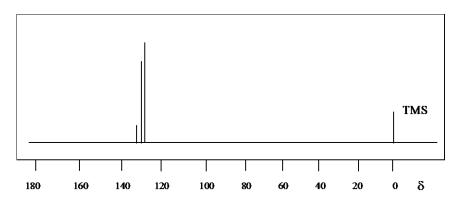

quartet δ 4.07 (2H)

- A. A
- B. B
- C. C
- D. D
- 11. The proton NMR of 1,1-dibromoethane would appear as a:
 - A. downfield doublet and upfield quartet
 - B. downfield quartet and upfield doublet
 - C. downfield doublet and upfield triplet
 - D. downfield triplet and upfield doublet
- 12. The proton NMR spectrum of a compound gives a singlet at δ 2.10 and δ 2.56 in a ratio of 3:2, respectively. Which compound below is the best match for the spectrum?

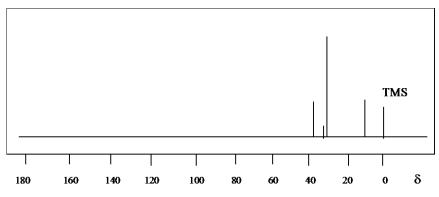
A) CH₃OCH₂CH₂OCH₃

- A. A
- B. B
- C. C
- D. D
- 13. The proton NMR of a compound, C₈H₉ClO, has the following peaks. Which compound below best fits the data?

δ 2.41 (1H)
δ 2.75 (2H)
δ 3.69 (2H)
δ 7.02 (2H)
$\delta~7.50~(2H)$

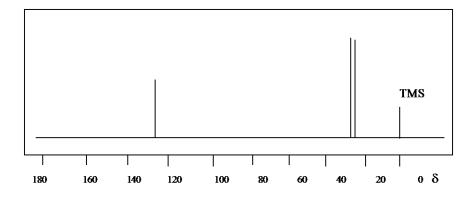

- B. II
- C. III
- D. IV
- 14. The proton NMR spectrum of a compound, $C_3H_6Cl_2$, has a pentet at δ 2.19 and a triplet at δ 3.72 in a 1:2 ratio, respectively. Which compound below best matches the data?
 - A) CH₃CH₂CHCl₂
 - B) ClCH₂CH₂CH₂Cl
 - C) CH₃CHCH₂Cl Cl
 - - A. A
 - B. B
 - C. C
 - D. D
- 15. A large doublet and a small septet pattern in ¹H NMR is usually indicative of a(an):
 - A. ethyl group
 - B. propyl group
 - C. isopropyl group
 - D. phenyl group
- 16. A triplet and quartet pattern in ¹H NMR often indicates the presence of a(an):
 - A. ethyl group
 - B. propyl group
 - C. isopropyl group
 - D. phenyl group
- 17. Which of the following describes the spin-spin splitting of the indicated H in the ¹H NMR of the compound shown below?

- A. singlet
- B. doublet of doublets
- C. triplet
- D. doublet of triplets
- 18. Identify the C₄H₉Cl isomer given the following proton NMR data:


doublet

 $\begin{array}{ll} \text{multiplet} & \delta \ 1.95 \ (1\text{H}) \\ \text{doublet} & \delta \ 3.35 \ (2\text{H}) \end{array}$

- A) (CH₃)₃CC1
- B) CH₃CH₂CH₂CH₂Cl
- C) CH₃CH₂CHCH₃
- D) (CH₃)₂CHCH₂Cl
 - A. A
 - B. B
 - C. C
 - D. D
- 19. What region of the electromagnetic spectrum is used in nuclear magnetic resonance spectroscopy?
 - A. radio wave
 - B. X-ray
 - C. ultraviolet
 - D. microwave
- 20. Which of the compounds below fit the following C-13 NMR?


- A. para-dichlorobenzene
- B. *meta*-dichlorobenzene
- C. ortho-dichlorobenzene
- D. chlorobenzene
- 21. Identify which one of the following isomers of C_6H_{14} has the C-13 NMR below.

- A. CH₃CH₂CH₂CH₂CH₂CH₃
- B. CH₃CH₂CH₂CH(CH₃)₂
- C. $(CH_3)_2CHCH(CH_3)_2$
- D. $CH_3CH_2C(CH_3)_3$
- 22. Which one of the following isomers of C_8H_{18} has only two peaks in its ^{13}C NMR?
 - A) CH₃(CH₂)₆CH₃
 - B) CH₃CHCH₂CH₂CHCH₃ CH₃ CH₃

- D) $(CH_3)_3CC(CH_3)_3$
 - A. A
 - B. B
 - C. C
 - D. D
- 23. In infrared spectroscopy, absorption of electromagnetic radiation results in transitions between ______ energy levels.
 - A. vibrational
 - B. electronic
 - C. rotational
 - D. nuclear
- 24. In proton NMR, ¹H-¹H spin-spin splitting is common. Why is there no comparable ¹³C-¹³C spin-spin splitting in C-13 NMR?
 - A. C-13 has a nuclear spin of zero.
 - B. The probability of two C-13 nuclei being next to each other in a compound is very low.
 - C. The coupling constant is very small-too small to be observed.
 - D. There is ¹³C-¹³C spin-spin splitting but because of the complex splitting patterns decoupling techniques are used to suppress it.
- 25. What is the multiplicity of the indicated carbon in an off-resonance decoupled C-13 NMR spectrum? (In off-resonance decoupled spectra, direct ¹³C-¹H coupling is observed.)

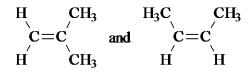
- A. singlet
- B. doublet
- C. quartet
- D. multiplet
- 26. Which one of the following compounds fits the C-13 NMR spectrum shown below?

- A. A
- B. B
- C. C
- D. D

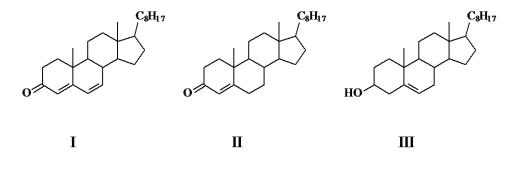
D.

IV

27. A C-13 NMR spectrum of a compound, $C_{10}H_{14}$, has five peaks. Two peaks are in the 10-30 ppm region and the other three are in the 120-140 ppm area. Which of the following compounds fits the data?

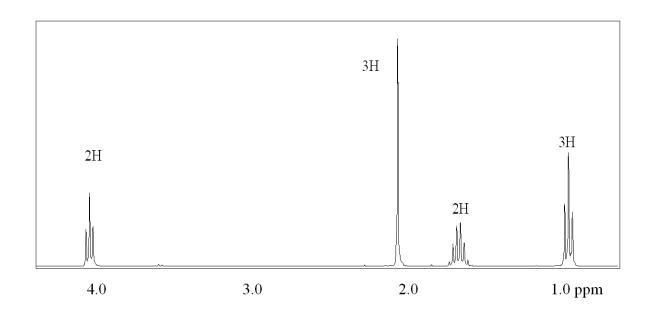

- 28. Which one of the following isomeric C_8H_{18} compounds has five peaks in its ^{13}C NMR spectrum?
 - A. octane
 - B. 2-methylheptane
 - C. 3-methylheptane
 - D. 4-methylheptane
- 29. Which one of the following has a λ_{max} in its UV-visible spectrum with the longest wavelength?

- A. A
- B. B
- C. C
- D. D
- 30. The reaction shown below gave two products in a ratio of approximately 1:2. The mass spectrum of the major product has a base peak at m/z 119. The minor product gave a base peak at m/z 133. Based on the reaction given and the information on the mass spectra, which of the following is the major product?


A)
$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 $CH_2CH_2CH_3$ CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_4 CH_5 $CH_$

- A. A
- B. B
- C. C
- D. D

31. Which of the methods below would be most useful in distinguishing between the following two compounds?



- A. UV spectroscopy
- B. C-13 NMR
- C. IR spectroscopy
- D. mass spectrometry
- 32. Match each steroid below with its λ_{max} in its UV-visible spectrum.

- I II III209 nm 241 nm 284 nm B) 241 nm 284 nm 206 nm 284 nm C) 241 nm 206 nm D) 284 nm 206 nm 241 nm
 - A. A
 - B. B
 - C. C
 - D. D
- 33. Which C-C bond would most likely break and give fragments in the mass spectrum of butyl benzene?

- A. 1
- B. 2
- C. 3
- D. 4
- 34. Which of the following compounds fits the proton NMR shown below?

- O || A) CH₃CH₂CH₂COCH₃
- O || B) CH₃CH₂COCH₂CH₃
- O || C) CH₃COCH₂CH₂CH₃
- O || D) CH₃CCH₂CH₂OCH₃
 - A. A
 - B. В

 - C. D. C D

ACS Review Spectroscopy KEY

- 1. c
- 2. в
- 3. D
- 4. в
- 5. в
- 6. A
- 7. D
- 8. A
- 9. D
- 10. в
- 11. в 12. c
- 13. c
- 14. в
- 15. c
- 16. A
- 17. в
- 18. D 19. A
- 20. c
- 21. D
- 22. D
- 23. A
- 24. в
- 25. в 26. D
- 27. D
- 28. D
- 29. A
- 30. D
- 31. в 32. c
- 33. в
- 34. c